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b Departmento de Engenharia Electromecâanica, Universidade da Beira Interior, 6201-001 Covilh~aa, Portugal

Received 22 January 2002; received in revised form 15 March 2003
Abstract

A theoretical study of the entrance thermal flow problem is presented for the case of a fluid obeying the Phan-Thien

and Tanner (PTT) constitutive equation. This appears to be the first study of the Graetz problem with a viscoelastic

fluid. The solution was obtained with the method of separation of variables and the ensuing Sturm–Liouville system

was solved for the eigenvalues by means of a freely available solver, while the ordinary differential equations for the

eigenfunctions and their derivatives were calculated numerically with a Runge–Kutta method.

The scope of the present study was quite wide: it encompassed both the plane and axisymmetric geometries for

channel and tube flows; two types of thermal boundary conditions with either an imposed wall temperature or an

applied heat flux; inclusion of viscous dissipation; and elastic (through the Weissenberg number) and elongational

(through the PTT parameter �) effects. The main underlying assumptions were those of constant physical properties,

negligible axial heat conduction, and fully developed hydrodynamic conditions. The results are discussed in terms of the

main effects brought about by viscoelasticity and viscous dissipation on the Nusselt number variation and the bulk

temperature.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of determining the thermal character-

istics of a fluid entering an heated section along a

straight duct has been studied by a number of authors

(see e.g. Eckert and Drake [1]) for the particular case of

laminar Newtonian flow. When the Prandtl number

characterising the physical properties of the fluid is

much larger than unity, one can assume that the hy-

drodynamic conditions at inlet are fully developed and it

has then been possible to derive analytical expressions

for the evolution of the Nusselt number and the tem-

perature distribution in the cross-section as the fluid
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enters the heated region. This problem has been known

as the ‘‘Graetz problem’’ since Graetz [2,3] solved it in

1883 and 1885 for Newtonian fluids; later, in 1910,

Nusselt [4] independently analysed the same problem in

such great detail that some texts refer to it as the

‘‘Graetz–Nusselt problem’’. More recent works, where

additional references on the subject can be found, are

those of Brown [5], who provided highly accurate tab-

ulated data for the necessary eigenvalues and eigen-

functions involved, and Ou and Cheng [6] who analysed

the situation with viscous dissipation and also under

turbulent flow regime.

For non-Newtonian inelastic fluids, a similar prob-

lem has been solved for fluids whose viscosity follows a

power-law variation with the shear rate of strain _cc, that
is g ¼ K _ccn�1, see the book by Bird et al. [7] for solutions

neglecting viscous heating and temperature effects on

flow properties. Account of temperature effects on flow

properties was considered by Christiansen et al. [8]
erved.
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Nomenclature

a non-dimensional elastic/elongational para-

meter (Eq. (5))

Br Brinkman number (Eqs. (11) or (13))

cp specific heat

DH hydraulic diameter

D=Dt substantial derivative

k thermal conductivity

Nu Nusselt number (hDH=k)
Pr Prandtl number

q heat flux

r radial or lateral coordinate

R tube radius or channel half-height

Re Reynolds number

t time

T temperature

u velocity, axial velocity component

U average velocity

x axial coordinate

x0 normalized axial coordinate (x�=4ð2� nÞ2)
yk functions in the eigenvalue problem

We Weissenberg number (kU=R)

Greek symbols

a thermal diffusivity (k=qcp)

g fluid viscosity

li eigenvalue

q fluid density

h non-dimensional temperature

� model parameter

k relaxation time

s stress tensor

v mean velocity ratio (UN=U)

W eigenfunction

$ gradient operator

Subscripts and superscripts

b bulk temperature

fd fully developed

n plane (n ¼ 0) or axisymmetric (n ¼ 1) con-

ditions

N Newtonian case

m index for boundary conditions: Twðm ¼ 0Þ
or qwðm ¼ 1Þ

w wall

� non-dimensional quantities

0 inlet temperature

95 thermal entry length (95%)
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and Christiansen and Craig [9], for power-law fluids

and a constant wall temperature, and the solution was

numerically obtained. Later, Forrest and Wilkinson [10]

have also considered internal heat generation by viscous

dissipation coupled with the temperature effects on vis-

cosity for constant heat flux at wall. Due to the com-

plexity of the problem, and especially to the lack of

solutions of the related hydrodynamic problem, there is

no account of a ‘‘Graetz’’ solution for a viscoelastic

fluid. In this case a hydrodynamic fully developed vi-

scoelastic flow enters a uniformly heated section of a

duct (with axisymmetric or planar geometry) and one

seeks to determine how its temperature will evolve from

there on. This is a two-dimensional problem, in which

the liquid temperature depends on the lateral and the

longitudinal position at a given cross-section. The so-

lution of the energy equation is complicated by the fact

that the velocity and stress profiles in the viscoleastic

liquid are more involved than those for the Newtonian

or non-Newtonian power-law fluids. On the other side,

whereas the condition of high Prandtl number is only

verified by some Newtonian and power-law non-New-

tonian fluids, viscoelastic fluids obeying the differential

constitutive equations are mostly very viscous and have

extremely high Prandtl numbers, usually exceeding those

of viscous Newtonian fluids. Thus, the thermal entry
problem here considered is most frequently encountered

in a number of practical industrial applications, such as

mold filling, polymer extrusion and other polymer pro-

cessing manipulations, where the fluids under consider-

ation have elastic characteristics.

The particular viscoelastic model chosen for the

present analysis is the simplified Phan-Thien and Tanner

(PTT) model [11] which has been utilised by numerous

authors in simulation studies of polymer melts. Quinzani

et al. [12] and Peters et al. [13] have shown that the PTT

model can represent with sufficient accuracy, for engi-

neering purposes, the flow of those polymer melts and

concentrated solutions. In addition, the hydrodynamic

solution for fully developed pipe and channel flow is

known [14] and the thermal problem corresponding to

the asymptotic situation of the present analysis is also

known [15,16]. The hydrodynamic solution in [14] is

required for the analysis, and the results in [15,16] are

useful for checking the correctness of the present solu-

tion.

The mathematical techniques here utilised closely

follow those of Graetz [2], Brown [5] and Ou and Cheng

[6] in the corresponding problem with a Newtonian

fluid. The governing equations are transformed into an

eigenvalue problem and this, in turn, is solved by

methods appropriate for Sturm–Liouville systems that
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appear in such transformation. Our derivation has been

patterned along the lines of Mikhailov and €OOzisik [17].

Some details of the present analytical derivation for the

viscoelastic fluid model are given here, together with a

complete assessment of the results, especially regarding

the effect of elasticity and the coupled effect of elasticity

and viscous heating on the development of the thermal

solution.
2. Governing equations

The present analysis deals with the problem of de-

termining the thermal development region of a visco-

elastic liquid flowing under hydrodynamic fully

developed conditions in a duct, of either circular cross-

section (the axisymmetric problem, in a tube) or a long

rectangular cross-section (the planar problem, in a

channel). In order to account simultaneously for these

two geometries we shall use the index n to compact in-

formation, with n ¼ 1 for tube flow and n ¼ 0 for

channel flow. Also, two types of thermal boundary

conditions are considered, distinguished by index

m : m ¼ 0 for an imposed uniform wall temperature Tw,

and m ¼ 1 for an imposed uniform heat flux at the wall,

qw. The duct is aligned with the x-axis whose origin x ¼ 0

corresponds to the point where the thermal condition is

applied (for x < 0: T ¼ T0, the bulk temperature at in-

let), and the radial or lateral coordinate is denoted by r,
with R being either the tube radius or the channel half-

width. The fluid motion is assumed to be laminar and

rectilinear with local velocity uðrÞ and temperature

T ðr; xÞ, and the cross-section average velocity U is re-

lated to the prescribed flow rate.

The rheological equation of state which determines

the stress field is [11]

1

�
þ k�

g
trs

�
s þ k

Ds

Dt

�
� s � $u� $uT � s

�
¼ gð$uþ $uTÞ ð1Þ

where k is the relaxation time, g the viscosity coefficient

and � the elongational parameter of the model. For

� ¼ 0 this model becomes identical to the well-known

upper convected Maxwell (UCM) model which still

represents an elastic liquid but with little interest for the

present problem: the solution is the same as for a

Newtonian fluid. So, � appears as an important pa-

rameter characterising the fluid; it imparts shear thin-

ning into the shear viscosity variation and impedes

unbounded elongational viscosities in uniaxial exten-

sion. In duct flow, viscoelasticity is usually characterised

by a Weissenberg number defined as We 	 kU=R. Now,

since the viscosity coefficient g is assumed to be con-

stant, the velocity field is independent of the tempera-

ture field and the hydrodynamic solution under fully
developed conditions was given by Oliveira and Pinho

[14] as

u ¼ U
3þ n
2

UN

U
ð1� r�2Þ 1

�
þ að1� r�2Þ

�
ð2Þ

for the velocity profile (r� ¼ r=R), and

sxr ¼ �ð3þ nÞgU
R

UN

U
r� ð3Þ

for the shear stress profile. In these equations UN rep-

resents the average velocity for the Newtonian fluid

subjected to the same pressure gradient (i.e. UN ¼
�R2ðdp=dxÞ=2nð3þ nÞg) so that the parameter v ¼
UN=U is a dimensionless pressure gradient which was

given as the solution of the following cubic equation:

3� n
5
2
� n

ð3
�

þ nÞ2�We2
�

UN

U

� �3

þ UN

U
¼ 1 ð4Þ

In order to account simultaneously for elastic and

elongational characteristics, the following non-dimen-

sional parameter was introduced:

a ¼ ð3þ nÞ2�We2 UN

U

� �2

ð5Þ

Following previous work [15,16] we shall assume that

the Fourier law for heat conduction is valid for the PTT

viscoelastic fluid and that both the thermal conductivity

k and the specific heat cp are not affected by elasticity.

With these assumptions, and once the hydrodynamic

solution is known, our problem consists on the solution

of the energy conservation equation:

qcpu
oT
ox

¼ 1

rn
o

or
rnk

oT
or

� �
þ sxr

du
dr

ð6Þ

subjected to the following boundary conditions:

T ¼ T0 for x6 0 8r
oT
or

¼ 0 at r ¼ 0 8xP 0
ð7Þ

and either for given wall temperature:

T ¼ Tw at r ¼ R 8x > 0 ð8Þ

or, for given wall heat flux (assumed positive when en-

tering the duct):

þk
oT
or

¼ qw at r ¼ R 8x > 0 ð9Þ

In Eq. (6) the second term on the right-hand side cor-

responds to the important effect of viscous dissipation,

which is relevant for the high viscosity fluids encoun-

tered in polymer processing.
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2.1. Non-dimensional formulation

Non-dimensional quantities are denoted with an as-

terisk. Velocity is scaled with the average value

u� ¼ u=U , the radial (lateral) coordinate is scaled with

the radius (half-height) r� ¼ r=R and the axial coordi-

nate is scaled as x� ¼ xa=R2U , where a is the thermal

diffusivity (a 	 k=qcp) following the practice for the

classical Graetz problem with a Newtonian fluid. Scaling

of temperature depends on the type of boundary con-

dition. When the wall temperature Tw is given, a non-

dimensional temperature is defined in the usual way:

h 	 T � T0

Tw � T0

ð10Þ

and the Brinkman number, which is a measure of vis-

cous dissipation, is defined as

Br 	 gU
2

kðTw � T0Þ
ð11Þ

On the other hand, for the case of an imposed heat flux

it is better to define a non-dimensional temperature as

h ¼ T � T0

qwR2ð2� nÞ=k ð12Þ

where the denominator represents a temperature scale

(qw is given) and consequently the Brinkman number is

defined differently, as

Br 	 gU
2

qwR2ð2� nÞ ð13Þ

The velocity profile u� is obtained directly from Eq. (2)

and upon a first derivation we arrive at the non-

dimensional velocity gradient profile:

du�

dr�
¼ � 3þ n

2
v2r�ð1þ 2ar�2Þ ð14Þ

These profiles, together with the shear stress variation

given by Eq. (3), are introduced into the energy equation

(6), giving the non-dimensional form of the energy

equation:

o

or�
r�n

oh
or�

� �
þ r�nð3þ nÞ2Brv2r�2ð1þ 2ar�2Þ

¼ r�n
3þ n
2

vð1� r�2Þ 1
�

þ að1þ r�2Þ
� oh
ox�

ð15Þ

to be solved for hðr�; x�Þ. The boundary conditions can

be cast under the fully compact form.

Condition at inlet:

hðr�; 0Þ ¼ 0 ð16Þ
Condition at the symmetry axis:

r� ¼ 0;
ohðr�; x�Þ

or�
¼ 0 ð17Þ

Condition at the wall:

r� ¼ 1; ð1� mÞhð1; x�Þ þ m
ohðr�; x�Þ

or�

¼ ð1� mÞ þ m
2ð2� nÞ ð18Þ

for m ¼ 0, given constant Tw; for m ¼ 1, given constant

qw.
3. Method of solution

The set of Eqs. (15)–(18) is similar to that found in

the classical Graetz problem (see a textbook, e.g. Eckert

and Drake [1]), albeit more complicated due to the si-

multaneous treatment of the plane and axisymmetric

cases and also of the given temperature or flux boundary

conditions, the inclusion of viscous dissipation, and the

fact that the velocity profile for the viscoelastic fluid is

not as simple as the parabolic variation of the Newto-

nian fluid. In essence, we follow that same method of

solution, based on separation of variables for the radial

and axial variation, which then leads to an eigenvalue

problem. Specifically, we adopt the separation solution

method explained by Mikhailov and €OOzisik [17] which is

particularly appropriate for a non-homogeneous pro-

blem like the one at hand, and gives the solution of the

temperature distribution hðr�; x�Þ as composed of vari-

ous terms related to different physical effects.

For the heat-flux boundary condition case, there are

terms for: the axial variation of the average bulk tem-

perature hbðx�Þ; the asymptotic (long x) radial distribu-

tion of temperature h/0ðr�Þ without, or with hg0ðr�Þ,
viscous dissipation effects; and the main decaying term

htðr�; x�Þ. This last term is given as an infinite series in

terms of the eigenvalues and eigenfunctions of the cor-

responding Sturm–Liouville equation similarly to the

classical Graetz problem, whereas the first three terms

are particular solutions of the non-homogeneous equa-

tion.

For the constant temperature boundary condition

case the solution is also the sum of a particular solution

of the non-homogeneous energy equation, a term related

to the asymptotic (long x) radial distribution of tem-

perature, and the general solution of the homogeneous

energy balance which becomes an infnite series of ei-

genvalues and eigenfunctions of the corresponding

Sturm–Liouville problem.

We shall omit the full details of the derivation which

are very cumbersome (the specialised text of Mikhailov

and €OOzisik [17] is a good guide for that) and limit our-

selves to giving the final expressions for the solution in

terms of the temperature distribution hðx�; r�Þ and the
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Nusselt number variation Nuðx�Þ. These expressions are

in terms of eigenvalues l2 and some functions yk , and the

numerical methods used for these preliminary calcula-

tions are first explained. In the results section the present

solution is compared to published solutions which are

valid for some limiting conditions (e.g. Newtonian fluid

without viscous dissipation) thus serving to verify the

correctness of the present derivation.

3.1. Eigenvalue problem

The solution of Eq. (15) is the sum of a general so-

lution of the corresponding homogeneous equation

(setting Br ¼ 0 in the second term of the left-hand side)

and of a particular solution of Eq. (15) ðBr 6¼ 0Þ. To

obtain the solution of the homogeneous equation the

technique of separation of variables is applied, by which

hðx�; r�Þ ¼ Wðr�Þ/ðx�Þ, leading to the differential equa-

tions:

d/ðx�Þ
dx�

þ l2/ðx�Þ ¼ 0 ð19Þ

and

d

dr�
r�n

dWðl; r�Þ
dr�

� �
þ l2r�n

3þ n
2

vð1� r2Þ
�

1½ þ að1þ r�2Þ

�

Wðl; r�Þ ¼ 0 ð20Þ

subject to boundary conditions:

r� ¼ 0;
dWðl; r�Þ

dr�
¼ 0 ð21Þ

and

r� ¼ 1; ð1� mÞWðl; 1Þ þ mr�n
dWðl; r�Þ

dr�
¼ 0 ð22Þ

where m ¼ 0 corresponds to T ¼ Tw constant, and m ¼ 1

to qw ¼ constant. Eq. (19) is readily integrated and de-

pends of the eigenvalues ðl2Þ that are determined as a

part of the solution of Eq. (20) which has the form of a

Sturm–Liouville equation [18]. To the final solution for

hðr�; x�Þ, the solution of Eq. (19) contributes the decay-

ing exponential function of the longitudinal coordinate

e�l2x� . The eigenvalues l2 have been evaluated numeri-

cally by means of a freeware Fortran code SLEDGE

(Pruess and Fulton, Netlib, cited by Pryce [19]) which

can be found in the internet. This code, amongst other

features, solves the general problem:

d

dX
Xn dY

dX

� �
þ l2f ðX ÞY ¼ 0 ð23Þ

and provides very accurate results for the eigenvalues.

The calculated eigenvalues were accurate to at least 12

significant digits and, for each combination of inde-
pendent variables, 160 eigenvalues were obtained for the

finite series that is a part of the thermal solution. Note

that in our case the function f ðX Þ depends on the elas-

ticity of the PTT fluid through both the parameter a and

the mean velocity ratio v ¼ UN=U . Therefore, we need

to reapply the SLEDGE code in order to obtain a full

set of eigenvalues whenever the Weissenberg number of

the flow or the elongational parameter of the PTT model

are changed. Clearly, the amount of work and com-

plexity of the task are greatly enhanced when one passes

from the Newtonian to the viscoelastic case, in view of

the increased number of free parameters.

Once the eigenvalues are known, our objective is the

determination of the normalized temperature distribu-

tion and of the Nusselt number which, as we will see in

the next two subsections, depend on various functions yk
and their derivatives [17]. They are defined as

y1ðl; r�Þ 	 r�n
oWðl; r�Þ

or�
ð24Þ

y2ðl; r�Þ 	 Wðl; r�Þ ð25Þ

y3ðl; r�Þ 	
oy1ðl; r�Þ

ol
ð26Þ

y4ðl; r�Þ ¼
oy2ðl; r�Þ

ol
ð27Þ

and the notation ykðl; r�Þ makes it plain that these

functions of r� are also dependent, in a parametric way,

of the eigenvalues l. By comparing with the original

Sturm–Liouville equations (20), the following four

coupled ordinary differential equations (ODE�s) are de-

rived:

dy1ðl; r�Þ
dr�

¼ �l2r�n
3þ n
2

vð1� r�2Þ

� ½1þ að1þ r�2Þ
y2ðl; r�Þ ð28Þ

dy2ðl; r�Þ
dr�

¼ y1ðl; r�Þ
r�n

ð29Þ

dy3ðl; r�Þ
dr�

¼ �lr�n
3þ n
2

vð1� r�2Þ½1þ að1þ r�2Þ


� ½ly4ðl; r�Þ þ 2y2ðl; r�Þ
 ð30Þ

dy4ðl; r�Þ
dr�

¼ y3ðl; r�Þ
r�n

ð31Þ

which need to be solved subjected to the initial condi-

tions:

y1ðl; 0Þ ¼ 0 ð32Þ

y2ðl; 0Þ ¼ 1 ð33Þ

y3ðl; 0Þ ¼ 0 ð34Þ

y4ðl; 0Þ ¼ 0 ð35Þ
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This was accomplished with a standard ODE solver

based on a fourth-order Runge–Kutta method taken

from Press et al. [20].

At this point we are in possession of the eigenvalues

and eigenfunctions that are required for the solution of

the thermal entrance problem and can proceed to the

presentation of expressions for the temperature and

Nusselt number distributions. The two cases corre-

sponding to the given wall temperature and imposed

wall heat flux are treated separately. Additional details

can be found in Ref. [17].

3.2. Solution for given Tw

The temperature distribution for this case is given by

hðr�; x�Þ

¼ 1� 2ð2þnÞaðr�6 � 1Þ þ ð5þ 4nÞðr�4 � 1Þ
ð20þ 7nÞ=3 Brv2

þ 2
X1
i¼1

e�l2
i x

�
y2ðli; r

�Þ
liy4ðli; 1Þy1ðli; 1Þ

y1ðli; 1Þ
�

� ð3þ nÞ2Br

�
Z 1

0

v2r�ð2þnÞð2ar�2 þ 1Þy2ðli; r
�Þdr�

�
ð36Þ

where the first two terms are related to the asymptotic

solution ðx ! 1Þ with viscous dissipation and the last

term is an infinite series resulting from the Sturm–

Liouville problem where l2
i are the eigenvalues. Note

that for x ! 1, the last term gives a non-zero finite

value. In engineering calculations one is generally more

interested in knowing how the heat flux at the duct wall

varies with the axial distance. This can be expressed in a

non-dimensional way by means of a Nusselt number

defined as

Nu ¼ hDH

k
¼ oh

or�

� �
r�¼1

2ð2� nÞ
1� hb

ð37Þ

where we used the relation DH=R ¼ 2ð2� nÞ for the

hydraulic diameter. Now, upon calculation of the bulk

temperature hb and derivation of the temperature profile

oh=or�, we arrive at the following rather long expression:
Nuðx�Þ ¼ 2ð2� nÞ �ð3þ nÞBrv þ 2S1

� 24ð54a2þ110aþ55Þ
1925

ð1� nÞ þ 280a2þ540aþ225
270

n
h i

Brv3 þ 2ðnþ 1ÞS2

8<
:

9=
; ð38Þ
where we define the sums:

S1 	
X1
i¼1

e�l2
i x

�

liy4ðli; 1Þ
fy1ðli; 1Þ � ð3þ nÞ2BrIig ð39Þ

and
S2 	
X1
i¼1

e�l2
i x

�

l3
i y4ðli; 1Þ

fy1ðli; 1Þ � ð3þ nÞ2BrIig ð40Þ

and the integral:

Ii 	
Z 1

0

v2r�ð2þnÞð2ar�2 þ 1Þy2ðli; r
�Þdr� ð41Þ

The integration involving function y2 in Eq. (41) was

carried out numerically by means of Romberg�s inte-

gration procedure performed in conjunction with the

extended trapezoidal method.

The task of computing the Nusselt number for this

case, therefore requires the systematic application of the

following procedure:

• For a given We and �, calculate v ¼ UN=U (Eq. (4))

and a (Eq. (5))

• For that a, obtain the eigenvalues li (from Eq. (20))

• For each eigenvalue li, compute:

y1ðli; 1Þ, y2ðli; r
�Þ and y4ðli; 1Þ from the system of

Eqs. (28)–(31), and

Ii, from Eq. (41).

• Finally, obtain Nu from Eq. (38) for each axial posi-

tion x�.

In engineering applications it is frequently more ad-

vantageous to use the average Nusselt number evaluated

between the inlet and a given location x�, denoted Nu.
An expression for Nu is derived from an energy balance

and yields an implicit equation:

x�Nuðx�Þ

¼ ð2�nÞ2 ln 2BrðUN=UÞðn�2Þðnþ3Þ�Nuðx�Þ
ðh�1ÞNuðx�Þþ2BrðUN=UÞðn�2Þðnþ3Þ

" #

ð42Þ

Solution of this equation must be obtained numerically,

a complex procedure when the Nusselt number changes

sign because this singularity gives rise to the existence of

multiple solutions.
3.3. Solution for given heat flux qw

In this case the boundary conditions involve deriva-

tives of the dependent variable h and are non-homoge-

neous. Standard methods of solving non-homogeneous

partial differential equations by transforming the equa-
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tions and by eigenfunction expansions (see chapters 7–9

in the book by Farlow [21]; also [17]) give the final

temperature distribution as a sum of various contribu-

tions:

hðr�; x�Þ ¼ hbðx�Þ þ h/0ðr�Þ þ hg0ðr�Þ þ htðr�; x�Þ ð43Þ

where the average (bulk) value raises linearly with x� as

imposed by an overall energy balance:

hbðx�Þ ¼ ðnþ 1Þx� 1

2ð2� nÞ

�
þ ð3þ nÞBrv

�
ð44Þ

the asymptotic ðx ! 1Þ radial temperature distribution

without and with viscous dissipation are given by
h/0ðr�Þ ¼ v2 n
760a2 þ 1224aþ 495

2160

�
þ ð1� nÞ 3636a

2 þ 6380aþ 2805

23100

�

� v
nþ 1

2ð2� nÞ
2nþ1a½r�6 � 9ð5=3Þð1�nÞr�2 þ 8ð7=4Þð1�nÞ
 þ 9ð5=9Þð1�nÞ½r�4 � 4ð3=2Þð1�nÞr�2 þ 3ð5=3Þð1�nÞ


72ð5=9Þð1�nÞ ð45Þ
and
hg0ðr�Þ ¼ ð3þ nÞBrv½2ð2� nÞh/0ðr�Þ


� Brv2 2
ðnþ2Þaðr�6 � 1Þ þ ð5þ 4nÞðr�4 � 1Þ

ð20þ 7nÞ=3 � Brv3 280ð162=35Þ
ð1�nÞa2 þ 504ð110=21Þð1�nÞaþ 225ð88=15Þð1�nÞ

270ð385=54Þn

ð46Þ
and the eigenfunction expansion (from the Sturm–

Liouville problem) is

htðr�;x�Þ¼2
X1
i¼1

e�l2
i x

�
y2ðli;r

�Þ
liy3ðli;1Þy2ðli;1Þ

y2ðli;1Þ
2ð2�nÞ

�
þð3þnÞ2BrIi

�

ð47Þ

with Ii from Eq. (41). In contrast to the previous case,

the eigenfunction expansion tends to zero for large val-

ues of x�, thus the particular solution of the non-

homogeneous equation (15) is made up of the sum of the

fully developed terms hb, h/0 and hg0. Details of the

derivation are omitted for the sake of brevity, but es-

sentially follow the steps outlined by Mikhailov and
€OOzisik, as mentioned beforehand.

Recall that for this case the non-dimensional tem-

perature h is defined differently (cf. Eq. (12)) and hence

the expression for the Nusselt number will also differ

from that of the given wall-temperature case. We have

Nu ¼ hDH

k
¼ qwDH

kðTw � TbÞ
ð48Þ

and keeping with the temperature scale adopted for the

present case, we obtain
Nuðx�Þ ¼ 1

hwðx�Þ � hbðx�Þ
ð49Þ

where hwðx�Þ ¼ hð1; x�Þ.
Therefore the expression used to evaluate the axial

variation of the Nusselt number will be

Nuðx�Þ ¼ 1

h/0ð1Þ þ hg0ð1Þ þ htð1; x�Þ
ð50Þ

with
h/0ð1Þ ¼ v2 n
19

54
a2

��
þ 17

30
aþ 11

48

�

þ ð1� nÞ 303

1925
a2

�
þ 29

105
aþ 17

140

��
ð51Þ

hg0ð1Þ ¼ Brv3 n
1

v2

� ��
þ ð1� nÞ 468

385
a2

�
þ 68

35
aþ 27

35

��
ð52Þ

and

htð1; x�Þ ¼ 2
X1
i¼1

e�l2
i x

�

liy3ðli; 1Þ
y2ðli; 1Þ
2ð2� nÞ

�
þ ð3þ nÞ2BrIi

�

ð53Þ

The task of computing Nu now follows the procedure:

• For a given We and �, calculate v ¼ UN=U (Eq. (4))

and a (Eq. (5))

• For that a, obtain the eigenvalues li (from Eq. (20))

• For each eigenvalue li, compute:

y2ðli; 1Þ, y2ðli; r
�Þ and y3ðli; 1Þ from Eqs. (28)–(31),

and

Ii, from Eq. (41).

• Evaluate h/0ð1Þ (from Eq. (51)), hg0ð1Þ (from Eq.

(52)) and htð1; x�Þ (from Eq. (53))



3872 P.M. Coelho et al. / International Journal of Heat and Mass Transfer 46 (2003) 3865–3880
• Finally, obtain Nu from Eq. (50) for each axial posi-

tion x�.

For this case, it is not possible to derive an expression

for the average Nusselt number equivalent to that found

for the constant wall temperature situation. The average

Nusselt number must be calculated from the integral of

the local Nusselt number and it is given by

Nuðx�Þ ¼ 1

x�

Z x�

0

dx�

hw � h
ð54Þ

The accurate numerical determination of this integral

requires data for values of x� well below our lower limit

of x�. Thus it is not possible here to perform the integral,

but that is not considered to be problematic because in

this case the heat flux is a given quantity.

4. Results and discussion

In order to keep the study focused we shall concen-

trate on the case for the round pipe and discuss sepa-

rately the results for the two types of boundary

conditions, imposed heat flux qw and imposed wall

temperature Tw. It is also convenient for each boundary

condition type, to separate the analysis of the situations

of pipe heating ðBr > 0Þ and cooling ðBr < 0Þ.

4.1. Given wall heat flux qw

4.1.1. Pipe heating ðqw > 0;Br > 0Þ
For the Newtonian fluid, the variation of the Nusselt

number with the dimensionless axial distance x0 is shown
10-3

10-2

10-1

100

101

102

103

10-5 10-4 10-3 10-2

Nu

Fig. 1. Nusselt number vs. axial distance x0 ¼ x=DHRePr, with Brinkm

flux, positive qw. The crosses are the solution given by Shah and Lon
in Fig. 1, where the Brinkman number is used as pa-

rameter. Along this section and in all graphs we use a

standard definition x0 ¼ x=DHRePr for the normalized

axial distance, instead of x�; it is easy to see that this new

x0 is related to that used in the previous sections by

x0 ¼ x�=4ð2� nÞ2. In the case without viscous dissipation

it is possible to compare the present results, based on

Eq. (49), with the solution reported by Shah and Lon-

don [22], which is shown by the crosses in the figure. A

perfect match between the two is observed, giving sup-

port to the correctness of the implementation of the

various codes used in the present work to calculate the

eigenvalues, the eigenfunctions, and their derivatives.

When the Brinkman number is greater than zero, there

are no available results in the literature to use for

comparison, as far as we are aware. Ou and Cheng [6] do

present graphs for the other boundary condition, of

fixed wall temperature. Viscous dissipation tends to de-

crease the Nusselt number, as a result of the relatively

faster increase of the wall temperature in comparison to

the bulk temperature (cf. Eq. (48)). For the viscoelastic

fluid this effect of Br is similar.

Another check on the present results is provided by

the Nusselt number for the Newtonian fluid in the fully

developed region ðx0 > 0:05Þ. It is possible to show that

Eq. (50) gives the analytical expression Nu ¼ 48=ð11þ
48BrÞ (e.g. [15]) when a ! 0 and x ! 1; this is shown

directly in Fig. 1 by comparing the thermally developed

theoretical values given in the caption with the present

results at x0 � 1. We note here that all the results for

Newtonian and non-Newtonian fluids pertain to x0 P
10�5. Accurate results of Nusselt number for smaller

values of x0 (the L�eevêeque solution, see [22, p. 105]) would
10-1 100 101

Br=0;         4.364
Br=0.1;      3.038
Br=1;         0.814
Br=10;     0.09776
Br=100;  9.977x10-3

Shah & London

x'

Nu
fd

an number as parameter. Newtonian fluid under imposed heat

don.
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require a significant increase in the number of terms of

the series, beyond the 160 that we used.

The influence of viscoelastic/elongational effects on

the Nusselt number variation is shown in Fig. 2(a)–(c),

for Brinkman numbers of 0, 1 and 10. It is emphasised

that both elastic and elongational effects, acting in a

coupled way, are important in changing the thermal

characteristics from those for the Newtonian fluid. An

elastic fluid with infinite molecular extensibility (corre-

sponding to � ¼ 0 in the PTT model) will show the same

thermal response of the Newtonian fluid. In general, the

parameter �We2 is seen to increase the Nusselt number,

for any x0 and Br, an expected feature due to the shear

thinning in viscosity. This entails a flatter radial velocity

profile with higher shear rates near, and better heat

transfer at the wall, thus tending to reduce the temper-
Fig. 2. Effect of viscoelasticity, measured by �We2, on the Nusselt num

wall heat flux, wall heating qw > 0: (a) Br ¼ 0, (b) Br ¼ 1 and (c) Br
ature variation across the tube section with the conse-

quence (Eq. (48)) that Nu will have the tendency to

increase.

In an effort to compare our solution with existing

data, Fig. 2(a) also shows results from Cho and Hartnett

[23] which were based on theoretical expressions for

power-law fluids that were validated experimentally,

according to the review of [23]. In Fig. 2(a), the symbols

representing the Nusselt number for power-law fluids

with n ¼ 1=3 (Eq. (28) of [23]) compare well with our

values as �We2 increases because, as can be seen in [14],

the viscometric viscosity of the PTT fluid behaves as that

of a power-law fluid with an index n ¼ 1=3 in the limit of

high �We2 numbers. When the flow becomes thermally

fully developed the Nusselt number is given by the ex-

pression (22) of Cho and Hartnett [23] which gives
ber variation for various Brinkman numbers. Case of imposed

¼ 10.
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Nu ¼ 5:053 for n ¼ 1=3. According to these authors,

provided the viscosity follows the specific power-law

index, these Nusselt number results are equally valid for

purely viscous and viscoelastic fluids.

An important feature is that the Nusselt number in-

crease is greatly enhanced, in relative terms, when the

viscous dissipation is taken into account (compare Fig.

2(a)–(c)). This is in agreement with previous findings for
Table 1

Nusselt number data for imposed positive heat flux

x0 Br ¼ 0 Br ¼ 0:1 B

Panel A: �We2 ¼ 0:1

1.00E)05 63.3 60.902

2.00E)05 50.056 47.73

4.00E)05 39.562 37.32

6.00E)05 34.467 32.281

8.00E)05 31.253 29.11

1.00E)04 28.967 26.859

0.0002 22.88 20.888

0.0004 18.081 16.219

0.0006 15.766 13.984

0.0008 14.313 12.59

0.001 13.284 11.608

0.002 10.572 9.0425

0.004 8.485 7.1007

0.006 7.5083 6.2055

0.008 6.9126 5.6647

0.01 6.5025 5.2952

0.02 5.501 4.4041

0.04 4.8988 3.8778

0.06 4.726 3.7286

0.08 4.6688 3.6795

0.1 4.6492 3.6627

0.2 4.6389 3.6538

Panel B: �We2 ¼ 10

1.00E)05 66.742 65.958

2.00E)05 52.769 52.004

4.00E)05 41.697 40.956

6.00E)05 36.323 35.598

8.00E)05 32.933 32.22

1.00E)04 30.522 29.818

0.0002 24.102 23.432

0.0004 19.043 18.41

0.0006 16.603 15.994

0.0008 15.072 14.48

0.001 13.988 13.41

0.002 11.133 10.6

0.004 8.9377 8.4507

0.006 7.912 7.451

0.008 7.2871 6.8439

0.01 6.8576 6.4276

0.02 5.8126 5.4189

0.04 5.1924 4.8238

0.06 5.0193 4.6583

0.08 4.9639 4.6055

0.1 4.9456 4.588

0.2 4.9364 4.5792
the thermally developed situation [15] and simply results

from the fact that the rate of heat generated by viscous

dissipation is proportional to the square of the shear rate

which is high close to the tube walls. Further checks on the

present solutionare providedbya comparisonbetween the

asymptotic values onFig. 2 (for x0 > 0:05; see Table 1) and

analytical results from Pinho and Oliveira (given in the

captions of Fig. 2); again, the agreement is exact.
r ¼ 1 Br ¼ 10 Br ¼ 100

45.415 12.818 1.5675

33.653 8.5211 1.0063

24.716 5.6463 0.64784

20.552 4.4354 0.50164

18.001 3.7375 0.41882

16.228 3.2731 0.36437

11.712 2.1718 0.23747

8.4168 1.4486 0.15611

6.9329 1.1474 0.12278

6.0433 0.97475 0.10384

5.435 0.86029 0.091353

3.9278 0.5901 0.062131

2.8767 0.41399 0.043301

2.4224 0.34135 0.035592

2.1582 0.30017 0.031238

1.9825 0.27322 0.028396

1.5759 0.21233 0.021997

1.3485 0.17926 0.018537

1.2861 0.17032 0.017603

1.2657 0.16742 0.0173

1.2588 0.16643 0.017197

1.2551 0.16591 0.017143

59.653 30.499 5.1804

46.007 21.367 3.362

35.31 14.844 2.1842

30.175 11.958 1.6993

26.963 10.246 1.4231

24.695 9.0847 1.2409

18.741 6.2426 0.81401

14.172 4.2917 0.53836

12.024 3.4534 0.42487

10.701 2.9644 0.3602

9.7777 2.6363 0.31749

7.4099 1.848 0.21726

5.6701 1.3216 0.15245

4.888 1.1009 0.12586

4.423 0.97482 0.11083

4.109 0.89187 0.10101

3.3668 0.70332 0.078927

2.9433 0.60089 0.067075

2.8279 0.57369 0.063947

2.7913 0.56512 0.062964

2.7792 0.5623 0.06264

2.7731 0.56089 0.062478



Table 2

Thermal entry data, x095, for imposed positive heat flux

Br �We2 ¼ 0 �We2 ¼ 1E)3 �We2 ¼ 1E)2 �We2 ¼ 1E)1 �We2 ¼ 1 �We2 ¼ 10

0 0.043077 0.043038 0.042788 0.042062 0.041223 0.040645

0.1 0.045575 0.045495 0.04501 0.043679 0.042196 0.041165

1 0.049143 0.04906 0.04855 0.047109 0.045282 0.043585

10 0.050162 0.050089 0.04965 0.048477 0.047183 0.046158

100 0.050283 0.050212 0.049783 0.048656 0.047476 0.046689
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For completeness and to make the present results

more practical for a potential user, we present our data

in Table 1 (Panel A) and (Panel B), for some of the most

representative conditions. For other conditions the user

may wish to visit the website indicated at the end of the

paper, where additional tables and the codes used to

generate the data are available.

Additionally, the distance x095 required for establish-

ment of fully developed thermal flow was determined,

from the Nusselt number variation, and is listed in Table

2 for some conditions. The usual definition is used [22],

i.e., x095 corresponds to the position where Nuðx0 ¼ x095Þ ¼
0:95Nufd. It can be seen from Table 2 that viscous dis-

sipation increases x095 which, for a Newtonian fluid,

varies from 0.043 at Br ¼ 0 to 0.050 at Br ¼ 100. Vi-

scoelasticity has the opposite effect: say, for Br ¼ 1, x095
varies from 0.0490 for �We2 ¼ 0 to 0.0436 for �We2 ¼ 10.

4.1.2. Pipe cooling ðqw; 0;Br < 0Þ
The heat transfer trends for this situation, as far as

influence of elasticity is concerned, essentially follow the

lines of the heating case: Nu increases (in absolute terms)
-100

-50

0

50

100

10-5 10-4 10-3 10-2

Nu

Fig. 3. Case of imposed negative wall heat flux (wall cooling, qw <
as �We2 increases. The variations are, however, more

complicated due to the opposite influence of the imposed

boundary conditions, tending to lower the fluid tem-

perature, and viscous dissipation, tending to increase it.

Below a certain critical value of the Brinkman number

(�Br2 of Pinho and Oliveira [15]; note change of sign in

Br definition) the second influence starts becoming

dominant, the Nu vs. x0 curve reaches a singular point

(when hb ¼ hw, Nu ! 1) and jumps from positive to

negative values. This is illustrated in Fig. 3 for a value of

Br ¼ �1 and increasing values of the parameter �We2.
The critical Brinkman number depends on �We2, tending
to decrease as �We2 increases and, under certain condi-

tions of high �We2, Nu remains positive for all x0. This is

also shown in Fig. 3, where for the highest elastic/elon-

gational fluid, �We2 ¼ 10, the Nusselt number remains

positive, indicating that the fluid mean temperature

stays all the time above the wall temperature (cf. Eq.

(48), recalling that here qw < 0).

The influence of the Brinkman number on the heat

transfer characteristics has been discussed by Shah and

London [22, pp. 129–132] for a Newtonian fluid, and by
10-1 100 101

Newtonian;     -1.297
εWe2=0.001;  -1.331
εWe2=0.01;    -1.567
εWe2=0.1;      -2.735
εWe2=1;         -9.085
εWe2=10;      +22.45

x'

Nu
fd

0): effect of �We2 on the Nusselt number variation (Br ¼ �1).
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Pinho and Oliveira [15] for the PTT fluid under devel-

oped conditions. There are three possible situations,

depending on the value of Br in relation to two critical

values Br1 and Br2:

(1) Br1 < Br < 0 (Br1 ¼ �1=8 for Newtonian fluid); wall

cooling dominates over viscous dissipation, so both

the bulk and the wall temperatures decrease with

x0, with Tb > Tw (or, hb < hw), therefore giving a pos-

itive Nu. Contrary to the wall heating case, Nu in-

creases with an increase of j Br j.
(2) Br2 < Br < Br1 (Br2 ¼ �11=49 for Newtonian fluid);

viscous dissipation starts dominating the imposed

wall cooling, so both Tb and Tw now raise with x0;
however, the effect is not sufficient yet to raise Tw

over Tb and so Nu remains positive for all x0. Same

trends for Nu as in situation (1).

(3) Br < Br2; viscous dissipation dominates completely,

tending to raise Tw more sharply than Tb. So, there

will be a critical position x0cr where hw ¼ hb and

Nu ! 1; for x0 < x0cr, Tw < Tb and the Nusselt num-

ber is positive; for x0 > x0cr, Tw > Tb and Nu becomes

negative.

The influence of elasticity/extensibility, as discussed

in [15], is essentially to decrease (or increase, in absolute

terms) the value of the transition Brinkman numbers:

Br1 and Br2 will become more negative as �We2 is raised.

The critical position x0cr is also delayed to higher values

and so Nu will tend to be positive all over the thermal

entrance, as �We2 raises. In Fig. 3 that situation occurs

for the curve at �We2 ¼ 10.

Again, for completeness we list in Table 3 some of the

more representative results for the Nusselt number

variation with x0, with Br and �We2 as parameters, for this

situation. Note the good agreement between the values in

this table for large x0 and the fully developed Nusselt

numbers given in the caption of Fig. 3, which were based

on theoretical results of [15]. In addition we give Table 4

which lists the development length x095 for different values
of �We2 and negative Brinkman numbers. It is seen that,

depending on whether the Brinkman number is higher or

lower than the critical value, the behaviour of the thermal

entry length with the Brinkman number and viscoelas-

ticity changes in a complex way.
4.2. Imposed wall temperature Tw

4.2.1. Fluid heating case (Br > 0)

This corresponds to the situation Tw > T0 and so

Br > 0. Tw is now fixed but the direction of heat transfer

at the wall (qw ¼ kðoT=orÞw) varies along the pipe when

viscous dissipation is accounted for. For low x0, heat

transfer is from the wall to the fluid and, since Tw is then

larger than Tb the Nusselt number is positive (Nu ¼
DHqw=kðTw � TbÞ). Viscous dissipation tends to increase

the fluid temperature at any given cross-section but its

effect is more strongly felt near the wall where the ve-

locity gradients are steeper. So, at a certain axial posi-

tion (x01) the radial temperature gradient at the wall

vanishes (ðoT=orÞw ¼ 0 ) qw ¼ 0), but Tw is still greater

than Tb; therefore, Nu becomes zero at x0 ¼ x01 and then

negative for higher x0 > x01 (because qw < 0). Viscous

dissipation keeps increasing the bulk temperature, so

that it eventually (at x0 ¼ x02) becomes equal to the wall

temperature (Tb ¼ Tw) resulting in a singular Nu, which

jumps from �1 to þ1. This behaviour of the Nu vs. x0

variation, for a Newtonian fluid, was discussed by Shah

and London [22, pp. 110–111] and is represented in Fig.

4 for Br ¼ 0 and Br ¼ 1.

The effect of shear thinning (due to the elastic and

elongational properties of the fluid) is to increase Nu and

delay the transitions mentioned above (x01 and x02), as

shown by the corresponding curves in the same Fig. 4,

for �We2 ¼ 1 (Br ¼ 0 and 1).

As in the case of constant wall heat flux (Section

4.1.1), in the entry flow region and for fully developed

thermal flow, our results tend to those provided by Cho

and Hartnett [23] for a power-law fluid with index of

n ¼ 1=3.
When viscous dissipation is considered, the asymp-

totic Nu (large x0) is independent of Br; for a Newtonian

fluid, it was found to be equal to Nufd ¼ 48=5 � 9:6 by

Ou and Cheng [6], and the present solution confirms that

value. For the PTT fluid, Coelho et al. [16] found Nufd to

be a function of �We2 only, independently of Br, giving
an asymptotic Nu � 12:14 at �We2 ¼ 1, in agreement

with the present analysis (see Fig. 4).
4.2.2. Fluid cooling case (Br < 0)

This case is characterised by a wall temperature

smaller than the inlet temperature (Tw < T0) and so the

Brinkman number is negative (Br < 0). The influence of

Br is similar for the Newtonian and the PTT fluids, as

shown in Fig. 5 (for �We2 ¼ 0 and 10; Br ¼ 0, )0.1, )1,
)10 and )100), and results from a balance between the

opposite effects of wall cooling and heating by viscous

dissipation. Ou and Cheng [6] have discussed the New-

tonian situation; they found two regimes separated by

the critical Brinkman number Br1 ¼ �6=5. For Br <
Br1, viscous dissipation effects dominate completely the

heat transfer and the Nusselt number decays monoton-

ically with x0 (except at very low x0 and high absolute Br,
due to the boundary condition at x0 ¼ 0). For Br1 <
Br < 0, the Nu vs. x0 variation goes through a mini-

mum at a certain critical axial position x0c; for x0 < x0c,
wall cooling is dominant and Nu decreases with x0. For

x0 > x0c, on the other hand, viscous dissipation becomes

predominant inducing a raising tendency on the Nu vs. x0

variation. At high x0, when the thermal condition



Table 3

Nusselt number data for imposed negative heat flux

x0 Br ¼ 0 Br ¼ �0:1 Br ¼ �1 Br ¼ �10 Br ¼ �100

Panel A: �We2 ¼ 0:1

1.00E)05 63.3 65.895 104.42 )21.544 )1.6492
2.00E)05 50.056 52.621 97.658 )12.92 )1.0484
4.00E)05 39.562 42.09 99.069 )7.9018 )0.66978
6.00E)05 34.467 36.97 106.74 )5.9726 )0.51668
8.00E)05 31.253 33.737 118.48 )4.9124 )0.43036
1.00E)04 28.967 31.435 134.73 )4.2288 )0.37377
0.0002 22.88 25.291 491.89 )2.6807 )0.2425
0.0004 18.081 20.426 )122 )1.7249 )0.15886
0.0006 15.766 18.068 )57.529 )1.3429 )0.12472
0.0008 14.313 16.582 )38.857 )1.1285 )0.10537
0.001 13.284 15.526 )29.911 )0.9883 )0.092627
0.002 10.572 12.725 )15.287 )0.66425 )0.06287
0.004 8.485 10.54 )8.9357 )0.45876 )0.043747
0.006 7.5083 9.5037 )6.8284 )0.3755 )0.035932
0.008 6.9126 8.8655 )5.7467 )0.32872 )0.031523
0.01 6.5025 8.4228 )5.0803 )0.29829 )0.028646
0.02 5.501 7.3258 )3.6899 )0.23009 )0.022174
0.04 4.8988 6.6494 )3.0003 )0.19342 )0.018678
0.06 4.726 6.4516 )2.8218 )0.18355 )0.017735
0.08 4.6688 6.3858 )2.7647 )0.18035 )0.017429
0.1 4.6492 6.3631 )2.7453 )0.17926 )0.017325
0.2 4.6389 6.3512 )2.7351 )0.17869 )0.01727

Panel B: �We2 ¼ 10

1.00E)05 66.742 67.544 75.743 )354.33 )6.1323
2.00E)05 52.769 53.556 61.859 )112.37 )3.8529
4.00E)05 41.697 42.465 50.906 )51.542 )2.4399
6.00E)05 36.323 37.079 45.618 )35.007 )1.8746
8.00E)05 32.933 33.679 42.299 )27.123 )1.5577
1.00E)04 30.522 31.26 39.949 )22.447 )1.3507
0.0002 24.102 24.812 33.761 )12.952 )0.87298
0.0004 19.043 19.721 29.016 )7.8135 )0.57063
0.0006 16.603 17.26 26.812 )5.9132 )0.44779
0.0008 15.072 15.713 25.477 )4.8866 )0.37828
0.001 13.988 14.617 24.565 )4.2313 )0.33259
0.002 11.133 11.722 22.373 )2.7665 )0.22609
0.004 8.9377 9.4842 21.093 )1.8766 )0.15783
0.006 7.912 8.4337 20.747 )1.5255 )0.12999
0.008 7.2871 7.7916 20.675 )1.3309 )0.1143
0.01 6.8576 7.3491 20.711 )1.2054 )0.10408
0.02 5.8126 6.2679 21.249 )0.92786 )0.081131
0.04 5.1924 5.622 22.013 )0.78184 )0.068854
0.06 5.0193 5.441 22.3 )0.7437 )0.065619
0.08 4.9639 5.3829 22.399 )0.73173 )0.064602
0.1 4.9456 5.3637 22.432 )0.7278 )0.064268
0.2 4.9364 5.3541 22.449 )0.72583 )0.064101

Table 4

Thermal entry data, x095, for imposed negative heat flux

Br �We2 ¼ 0 �We2 ¼ 1E)3 �We2 ¼ 1E)2 �We2 ¼ 1E)1 �We2 ¼ 1 �We2 ¼ 10

)100 0.05031 0.05024 0.04981 0.0487 0.04755 0.04682

)10 0.05044 0.05037 0.04995 0.04889 0.04788 0.0475

)1 0.052 0.05196 0.05175 0.05168 0.05542 0.02139

)0.1 0.0347 0.03502 0.03657 0.03885 0.03981 0.04002
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becomes established (fully developed) Nu tends to a fixed

level independent of Br; it was found to be 48=5 � 9:6

for Newtonian fluids [22] and 12.9 for the viscoelastic

PTT fluid as �We2 ! 1 [16]. These asymptotic values



Table 5

Thermal entry data, x095, for imposed wall temperature

Br �We2 ¼ 0 �We2 ¼ 1E)3 �We2 ¼ 1E)2 �We2 ¼ 1E)1 �We2 ¼ 1 �We2 ¼ 10

)100 0.16397 0.16363 0.16158 0.15649 0.15103 0.14575

)10 0.15753 0.15703 0.15394 0.14408 0.12202 0.0087724

)1 0.0046927 0.004248 0.0027064 0.16356 0.22466 0.27736

)0.1 0.0011023 0.0010884 0.0010082 0.34804 0.38462 0.42293

0 0.033388 0.033359 0.033178 0.032685 0.032144 0.031778

0.1 0.31391 0.31383 0.31279 0.30332 0.39827 0.40968

1 0.24999 0.25266 0.29022 0.29443 0.20156 0.29972

10 0.17134 0.17115 0.17005 0.1744 0.17328 0.19143

100 0.16534 0.16502 0.16317 0.15891 0.15562 0.15527
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are well captured by the present solution (cf. Fig. 5,

where the analysis of [16] gives Nufd � 12:9).
Another feature observed from Fig. 5, regarding the

effects brought about by viscoelastic/elongational fluid

properties, is that whereas under fully developed con-

ditions Nu is higher for higher �We2, under developing

conditions Nu tends to be lower for the more elastic

fluids. This can be explained by the enhanced heat

transfer at the wall in the viscoelastic fluid case, on ac-

count of the steeper velocity gradients there, which tends

to elongate the region over which the imposed wall

cooling takes place, before viscous dissipation sets in.

Finally, Table 5 gives the development lengths x095 for

the constant wall case for both situations of Br > 0 and

Br < 0.
5. Conclusions

The equivalent ‘‘Graetz problem’’ for a viscoelastic

fluid obeying the PTT constitutive equation is solved for

both thermal boundary conditions of specified wall

temperature or imposed heat flux, under plane or axi-

symmetric geometries. The solution is given in terms of

the developing dimensionless temperature profile, h vs.

x0, and the dimensionless heat transfer coefficient, Nuðx0Þ,
as infinite series of eigenvalues and constants which have

been numerically determined to high precision for this

Sturm–Liouville like problem.

For various representative conditions, of wall heating

and cooling and for given qw or Tw, that solution was

discussed and the influence of viscous dissipation (re-

lated to the Brinkman number) and shear thinning (re-

lated to the elasticity of the fluid measured by �We2) was

established. In general, as the dimensionless group �We2

(elongational/elastic effects) increases the gross heat

transfer characteristics to the fluid tend to increase.

Some exceptions and singular conditions are also iden-

tified and discussed.

This study involved a considerable amount of work

to determine the eigenvalues and constants appearing in

the expressions for Nu vs. x0, hb vs. x0 and hw vs. x0. A
fraction of the Nusselt number and thermal entry data

obtained during this study was included as tables, for

representative conditions. But, in order to avoid ex-

tending considerably the present paper, we have decided

to make available additional information (like data for

the average Nusselt Nu), both as data files and FOR-

TRAN codes, which can be accessed freely from the

internet (at http://www.fe.up.pt/~fpinho/research/stur-

mptt.html).
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